HACKABILITY
This is so hackable! OK, this might not be something to add to your cosplay, or provide massive 'bang for your bucks' project enhancement. But what we can do with this kit is add an Arduino, micro:bit, or Raspberry Pi and use a little coding to enhance the learning offered by the board.
For example, we connected up a micro:bit using 4tronix’s Bit:170 breakout board. This gave us access to all the GPIO pins of the micro:bit using a breadboard format. The jumper wires which came with the electronics kit fit perfectly into Bit:170, and with some MicroPython code written using the excellent Mu editor, we managed to flash the large, yellow LED. With that test successful, we moved on to control the motor via an NPN transistor whose collector and emitter was connected to the VCC side of the battery and the + terminal of the motor. By turning the base pin on via a resistor connected to a pin on the micro:bit, we could start and stop the motor with ease.
Using the electronics lab kit with micro:bit was very straightforward thanks to Bit:170; in fact, the board fitted neatly into the space where the batteries were housed.
Can we hack this any more? Yes! We can add our own components, requiring only that we carefully make space for the parts, and add springs which can be found cheaply online. So, we could add a NeoPixel LED to replace the RGB flashing LED, an OLED screen, or simple components such as capacitors. We can add anything we desire!
If we wish to take the hacks even further, we could integrate a Raspberry Pi Zero in USB gadget mode into the kit, and then code the GPIO and electronics via another computer.
The purpose of this kit is to inspire the next generation of makers, hackers, and tinkerers to learn a new skill and make cool projects. On its own, it can do this, but by adding a microcontroller/ microcomputer we can take this to the next level. Learning to code and learning electronics in one simple package is now possible for less than £30!