
Get Started with MicroPython on
Raspberry Pi Pico
Errata

Chapters 4–7
We have identified an error in some code examples in the first print run of Get Started with MicroPython
on Raspberry Pi Pico. We're very sorry for this mistake, and we have corrected it in the PDF edition of the
book. We have withdrawn the incorrect print edition from sale and asked our distributors to do the same,
and a new, updated, edition is being printed. Customers who have purchased the incorrect edition of the
book from the Raspberry Pi Press store or from a Raspberry Pi Approved Reseller will receive a copy of the
updated edition free of charge from their retailer.

The error means that the projects in chapters 4 to 7 of the book, which use a digital input device (either a
push-button or PIR sensor), will give erratic results if readers copy the code examples as they appear.
This is because many of these code examples are missing a necessary parameter. (If you're already
familiar with Python, you'll recognise that this parameter is needed to pull down the pin’s resistor manually.)

To avoid the problem, you need to add the missing parameter machine.Pin.PULL_DOWN to each line
of code that sets up the pin input with the code machine.Pin.IN. Every time a code example includes
machine.Pin.IN, you need to add to it so that it reads machine.Pin.IN, machine.Pin.PULL_DOWN.

For example, on page 54:

button = machine.Pin(14, machine.Pin.IN)

…should change to:

button = machine.Pin(14, machine.Pin.IN, machine.Pin.PULL_DOWN)

And on page 82:

sensor_pir = machine.Pin(28, machine.Pin.IN)

…should change to:

sensor_pir = machine.Pin(28, machine.Pin.IN, machine.Pin.PULL_DOWN)

Other lines containing ‘machine.Pin.IN’ should be changed in a similar manner.

This is because Raspberry Pi Pico’s GPIO pin resistors aren’t automatically pulled down by default, as
stated in the book.

Further explanation

When Pico powers up, MicroPython does not touch any GPIO state of the hardware, so the pins should be
in whatever state they started in.

If the user constructs a Pin object by specifying the mode (eg IN, OUT), but does not specify any pull, then
MicroPython defaults to setting the pin to "no pull" mode (i.e. disables pull-up and pull-down).

If the user constructs a Pin object by specifying the mode and the pull, then MicroPython configures the
pin as requested.

Page 28
To avoid the infinite loop program being unstoppable, a small time delay should be added to the code using
the utime library:

import utime

print("Loop starting!")

while True:

 print("Loop running!")

 utime.sleep(1)

print("Loop finished!")

Page 63
To prevent an intermittent error relating to the button, a small time delay should be added to the loop in the
button_reader_thread function:

def button_reader_thread():

 global button_pressed

 while True:

 if button.value() == 1:

 button_pressed = True

 utime.sleep(0.01)

Page 71
For more reliable sensing of a button press, the button_handler function should be as follows, here and
in subsequent code examples:

def button_handler(pin):

 global pressed

 if not pressed:

 pressed=True

 print(pin)

Pages 82–83
To prevent the alarm from being triggered by any jitter in the signal from the PIR sensor, the
pir_hander(pin) function should be as follows, here and where it is used as the basis for subsequent
code examples. You will also need to add the line import utime right at the start of the program.

def pir_handler(pin):

 utime.sleep_ms(100)

 if pin.value():

 print("ALARM! Motion detected!")

Pages 97, 103
The pin number for the potentiometer should be 26 (not 28) in the code:

potentiometer = machine.ADC(26)

Page 102
Instead of attempting to use the led.duty method, which no longer exists, you should go straight
to using led.duty_u16:

led.duty_u16(potentiometer.read_u16())

Page 113
In the box on this page, Raspberry Pi Pico’s file system is said to be 128kB in size; in fact, it is 1.375MiB
(1,441,792 bytes). This means it can continue to log data for much longer than stated.

Pages 130–138
We recommend using the utime library instead of time, for consistency with the other examples.
Therefore, you should replace import time with import utime wherever it appears in code examples.

To improve the performance of the NeoPixel example, we advise changing the delays from
time.sleep_ms(100) to utime.sleep_ms(10). In addition, the section for the white pixels
should be as follows:

print("white")

for j in range(0, 255):

 for i in range(NUM_LEDS):

 ar[i] = (j<<16) + (j<<8) + j

 sm.put(ar,8)

 utime.sleep_ms(10)

